Ubicación tridimensional de fibras ribbond dentro de un núcleo-muñón de resina

Reporte de Caso

Autores/as

  • Israel Jimenez Vanegas Universidad Católica de Cuenca
  • Bolivar Andres Delgado Gaete Universidad Católica de Cuenca

DOI:

https://doi.org/10.31984/oactiva.v10i3.1147

Palabras clave:

Técnica de Perno Muñón, Resinas Compuestas, Restauración Dental Permanente, Endodoncia

Resumen

Un muñón adhesivo de resina, reforzado con fibras como procedimiento sustitutivo de la técnica convencional que usa pernos intra-radiculares promete ventajas relacionadas con el comportamiento biomecánico del complejo diente-restauración en dientes endodónticamente tratados. El objetivo del presente estudio fue presentar una técnica que permita optimizar tiempo y materiales durante la ejecución de un muñón adhesivo de resina, mediante el uso de una guía de silicona basado en el diseño final de la restauración.  Se presenta a consulta un paciente con restos radiculares de los órganos dentales 1.1. y 1.2. con fracaso del sistema perno-corona (falla adhesiva), los remanentes dentales presentan caries y endodoncias contaminadas. El paciente fue remitido al área de endodoncia para los respectivos retratamientos, posteriormente (un mes de observación) el protocolo restaurador se basó en el uso de la guía de silicona confeccionada sobre un encerado que guio la elaboración del muñón que contenía fibras Ribbond, resina con fibras cortas (EverX Posterior) y resina convencional como ultima capa del muñón, sobre este muñón se colocó una corona de disilicato de litio. El diseño final de la restauración en la guía de silicona nos permitió el posicionamiento correcto de cada uno de los materiales dentro del muñón, lo que redujo tiempo, costos económicos, evitó la disminución de

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Zarow M, Dominiak M, Szczeklik K, Hardan L, Bourgi R, Cuevas-Suárez C. Effect of composite core materials on fracture resistance of endodontically treated teeth: a systematic review and meta-analysis of in vitro studies. Polymers. 2021 Jul 9;13(14):1-9. DOI: https://doi.org/10.3390/polym13142251

2. Kharouf N, Arntz Y, Eid A, Zghal J, Sauro S, Haikel Y. Physicochemical and antibacterial properties of novel, premixed calcium silicate-based sealer compared to powder-liquid bioceramic sealer. J Clin Med. 2020 Sep 25;9(10):1-17. DOI: https://doi.org/10.3390/jcm9103096

3. Eskitaşcioğlu G, Belli S. Use of a bondable reinforcement fiber for post-and-core buildup in an endodontically treated tooth: a case report. Quintessence Int. 2002;33(7). Disponible en: https://pubmed.ncbi.nlm. nih.gov/12165992/

4. Sadr A, Bakhtiari B, Hayashi J, Luong M, Chen Y, Chyz. Effects of fiber reinforcement on adaptation and bond strength of a bulk-fill composite in deep preparations. Dent Mater. 2020 Apr 1;36(4):527–534. DOI: https://doi.org/10.1016/j.dental.2020.01.007

5. Sáry T, Garoushi S, Braunitzer G, Alleman D, Volom A, Fráter M. Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques - An in vitro study. J Mech Behav Biomed Mater. 2019 Oct (98):348–356. DOI: https://doi.org/10.1016/j.jmbbm.2019.07.006

6. Magne P, Lazari P, Carvalho M, Johnson T, Del Bel Cury A. Ferrule-effect dominates over use of a fiber post when restoring endodontically treated incisors: an in vitro study. Oper Dent. 2017 Jul 1;42(4):396–406. DOI: https://doi.org/10.2341/16-243-L

7. Carvalho M de, Lazari P, Gresnigt M, Del Bel Cury A, Magne P. Current options concerning the endodontically-treated teeth restoration with the adhesive approach. Braz Oral Res. 2018 Oct 18;32. DOI: https://doi.org/10.1590/1807-3107bor-2018.vol32.0074

8. Tan P, Aquilino S, Gratton D, Stanford C, Tan S, Johnson W. In vitro fracture resistance of endodontically treated central incisors with varying ferrule heights and configurations. J Prosthet Dent. 2005 Apr;93(4):331–336. DOI: https://doi.org/10.1016/j.prosdent.2005.01.013

9. Sorensen J, Engelman M. Ferrule design and fracture resistance of endodontically treated teeth. J Prosthet Dent. 1990 May 1;63(5):529–536. DOI: https://doi.org/10.1016/0022-3913(90)90070-S

10. Juloski J, Apicella D, Ferrari M. The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: a finite element analysis. Dent Mater. 2014 Dec 1;30(12):1304–1315. DOI: https://doi.org/10.1016/j.dental.2014.09.004

11. Stankiewicz N, Wilson P. The ferrule effect. Dent Update. 2008 May 2;35(4):222-228. DOI: https://doi.org/10.12968/denu.2008.35.4.222

12. Magne P, Mori-Ubaldini A. Thermal and bioactive optimization of a unidose 3-step etch-and-rinse dentin adhesive. J Prosthet Dent. 2020 Oct;124(4):1-7. DOI: https://doi.org/10.1016/j.prosdent.2020.03.011

13. Magne P, Goldberg J, Edelhoff D, Güth J. Composite resin core buildups with and without post for the restoration of endodontically treated molars without ferrule. Oper Dent. 2016;41(1):64-75. DOI: https://doi.org/10.2341/14-258-L

14. Naumann M, Schmitter M, Frankenberger R, Krastl G. Ferrule comes first, post is second! Fake news and alternative facts? A systematic review. J Endod. 2018 Feb;44(2):212-219. DOI: https://doi.org/10.1016/j. joen.2017.09.020

15. Sequeira-Byron P, Fedorowicz Z, Carter B, Nasser M, Alrowaili E. Single crowns versus conventional fillings

for the restoration of root-filled teeth. Cochrane Database Syst Rev. 2015 Sep 25;(9):1-25. DOI: https://doi.org/10.1002/14651858.CD009109.pub3

16. Aksornmuang J, Nakajima M, Senawongse P, Tagami J. Effects of C-factor and resin volume on the bonding to root canal with and without fibre post insertion. J Dent. 2011 Jun;39(6):422-429. DOI: https://doi.org/10.1016/j.jdent.2011.03.007

17. Bouillaguet S, Troesch S, Wataha J, Krejci I, Meyer J, Pashley D. Microtensile bond strength between adhesive cements and root canal dentin. Dent Mater. 2003 May;19(3):199-205. DOI: https://doi.org/10.1016/s01095641(02)00030-1

18. Breschi L, Mazzoni A, De Stefano-Dorigo E, Ferrari M. Adhesion to intraradicular dentin: a review. J Adhes Sci Technol. 2009 Jan;23(7-8):1053-1083. DOI: https://doi.org/10.1163/156856109X440957

19. Serafino C, Gallina G, Cumbo E, Ferrari M. Surface debris of canal walls after post space preparation in

endodontically treated teeth: a scanning electron microscopic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004 Mar;97(3):381-387. DOI: https://doi.org/10.1016/j.tripleo.2003.10.004

20. Tay F, Loushine R, Lambrechts P, Weller R, Pashley D. Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach. J Endod. 2005 Aug;31(8):584-589. DOI: https://doi.org/10.1097/01.don.0000168891.23486.de

21. Arola D, Reprogel R. Tubule orientation and the fatigue strength of human dentin. Biomaterials. 2006 Mar;27(9):2131-2140. DOI: https://doi.org/10.1016/j.biomaterials.2005.10.005

22. El Mowafy O, Watts D. Fracture toughness of human dentin. J Dent Res. 1986 May;65(5):677-681. DOI:https://doi.org/10.1177/00220345860650050901

23. Ivancik J, Arola D. The importance of microstructural variations on the fracture toughness of human dentin. Biomaterials. 2013 Jan;34(4):864-874. DOI: https://doi.org/10.1016/j.biomaterials.2012.10.032

24. Shinno Y, Ishimoto T, Saito M, Uemura R, Arino M, Marumo K. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci Rep. 2016 Jan 22;6(1):19849. DOI: https://doi.org/10.1038/srep19849

25. Zhang Y, Du W, Zhou X, Yu H. Review of research on the mechanical properties of the human tooth. Int J Oral Sci. 2014 Jun;6(2):61-69. DOI: https://doi.org/10.1038/ijos.2014.21

26. Soares C, Rodrigues M, Faria-e-Silva A, Santos-Filho P, Veríssimo C, Kim H. How biomechanics can affect the endodontic treated teeth and their restorative procedures? Braz Oral Res. 2018 Oct 18;(32). DOI: https://doi.org/10.1590/1807-3107bor-2018.vol32.0076

27. Carvalho M, Lazari-Carvalho P, Del Bel Cury A, Magne P. Fatigue and failure analysis of restored endodontically treated maxillary incisors without a dowel or ferrule. J Prosthet Dent. 2022 Jun;131(2):241-250.. DOI: https://doi.org/10.1016/j.prosdent.2021.07.007

28. Belli S, Eskitascioglu G. Biomechanical properties and clinical use of a polyethylene fibre post-core material. J Oral Rehabil [Internet]. 2001 [citado 28 de septiembre de 2023];28(9):911-917. Disponible en: https://www.researchgate.net/publication/237797197_Biomechanical_properties_and_clinical_use_of_a_polyethyle_fiber_post-core_material

29. Erkut S, Gulsahi K, Caglar A, Imirzalioglu P, Karbhari V, Ozmen I. Microleakage in overflared root canals restored with different fiber reinforced dowels. Oper Dent. 2008 Jan;33(1):96-105. DOI: https://doi.org/10.2341/0747

30. Deliperi S, Alleman D, Rudo D. Stress-reduced direct composites for the restoration of structurally compromised teeth: fiber design according to the “wallpapering” technique. Oper Dent. 2017 May;42(3):233-243. DOI: https://doi.org/10.2341/15-289-T31. Lassila L, Keulemans F, Vallittu P, Garoushi S. Characterization of restorative short-fiber reinforced dental composites. Dent Mater J. 2020 Nov 27;39(6):992-999. DOI: https://doi.org/10.4012/dmj.2019-088

32. Tsujimoto A, Barkmeier W, Takamizawa T, Latta M, Miyazaki M. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite. Dent Mater J. 2016;35(3):418-424. DOI: https://doi.org/10.4012/dmj.2015-280

33. van den Breemer C, Cune M, Özcan M, Naves L, Kerdijk W, Gresnigt M. Randomized clinical trial on the survival of lithium disilicate posterior partial restorations bonded using immediate or delayed dentin sealing after 3 years of function. J Dent. 2019 Jun 1;85:1-10. DOI: https://doi.org/10.1016/j.jdent.2019.02.001

34. Carvalho M, Lazari-Carvalho P, Polonial I, Souza J, Magne P. Significance of immediate dentin sealing and flowable resin coating reinforcement for unfilled/lightly filled adhesive systems. J Esthet Restor Dent. 2021;33(1):88-98. DOI: https://doi.org/10.1111/jerd.12700

35. Gresnigt M, Cune M, Jansen K, Van der Made S, Özcan M. Randomized clinical trial on indirect resin composite and ceramic laminate veneers: up to 10-year findings. J Dent. 2019 Jul;86:102-109. DOI: https://doi.org/10.1016/j.jdent.2019.06.001

Publicado

2025-11-12

Cómo citar

Jimenez Vanegas, I., & Delgado Gaete, B. A. (2025). Ubicación tridimensional de fibras ribbond dentro de un núcleo-muñón de resina: Reporte de Caso. Odontología Activa Revista Científica, 10(3), 17–27. https://doi.org/10.31984/oactiva.v10i3.1147