Influencia a nivel sistémico del Streptococcus mutans presente en caries y prótesis dentales: una revisión bibliográfica
DOI:
https://doi.org/10.31984/oactiva.v8i1.747Palabras clave:
Streptococcus mutans, microorganismos, interacción, enfermedadesResumen
Objetivo: El objetivo de este estudio es determinar la influencia que puede tener S. mutans a nivel sistémico. Materiales y métodos: Se realizó una búsqueda sistemática en una sola fuente de información que en este caso fue PubMed obteniendo un total de 87 artículos científicos del año 2011 al año 2021, tras verificar el cumplimiento de los criterios de inclusión que fueron artículos que indiquen presencia de S. mutans en prótesis dentales o en caries, artículos que indiquen la influencia de S. mutans a nivel sistémico o que informen acerca de la interacción de este microorganismo con otros microorganismos patógenos, y emplear palabras clave como “systemic”, “Streptococcus mutans”, “diseases”, finalmente fueron elegidos 36 artículos para esta revisión bibliográfica. Estado del arte: S. mutans está presente en patologías de interés clínico como la endocarditis infecciosa, la nefropatía por inmunoglobulina A y la diabetes, es recurrente principalmente en prótesis acrílicas y tiene sinergia con otras bacterias patógenas causantes de endocarditis, S. mutans también puede ser empleado en el diagnóstico temprano de la pre hipertensión e hipertensión, además favorece el microambiente para la aparición de candidiasis oral y es el microorganismo oral más frecuentemente obtenido en enfermedades de válvula cardiaca. Conclusión: La mayor influencia de S. mutans se encuentra en el sistema circulatorio por su presencia en diferentes patologías como endocarditis infecciosa o enfermedades de válvulas cardiacas, además puede ayudar al diagnóstico de otras afecciones como la hipertensión.
Descargas
Citas
2. Zeng L, Burne RA. Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J Bacteriol [Internet]. 2013;195(4):833–43. Available from: https://pubmed.ncbi.nlm.nih.gov/23222725/
3. Bowen WH, Koo H. Biology of streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix formation of cariogenic biofilms. Caries Res [Internet]. 2011;45(1):69–86. Available from: https://pubmed.ncbi.nlm.nih.gov/21346355/
4. Ellepola K, Liu Y, Cao T, Koo H, Seneviratne CJ. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms. J Dent Res [Internet]. 2017;96(10):1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/28605597/
5. Mathews B, Nedumgottil. Relative presence of Streptococcus mutans, Veillonella atypica, and Granulicatella adiacens in biofilm of complete dentures. J Indian Prosthodont Soc [Internet]. 2018;2–6. Available from: https://pubmed.ncbi.nlm.nih.gov/29430138/
6. Mathew MG, Samuel SR, Soni AJ, Roopa KB. Evaluation of adhesion of Streptococcus mutans, plaque accumulation on zirconia and stainless steel crowns, and surrounding gingival inflammation in primary molars: randomized controlled trial. Clin Oral Investig [Internet]. 2020;24(9):3275–80. Available from: https://pubmed.ncbi.nlm.nih.gov/31955271/
7. Bowen WH. Dental caries – not just holes in teeth! A perspective. Mol Oral Microbiol [Internet]. 2016;31(3):228–33. Available from: https://pubmed.ncbi.nlm.nih.gov/26343264/
8. Conrads G, About I. Pathophysiology of Dental Caries. Monogr Oral Sci [Internet]. 2018;27:1–10. Available from: https://pubmed.ncbi.nlm.nih.gov/29794423/
9. Baker JL, Faustoferri RC, Quivey RG. Acid-adaptive mechanisms of Streptococcus mutans–the more we know, the more we don’t. Mol Oral Microbiol [Internet]. 2017;32(2):107–17. Available from: https://pubmed.ncbi.nlm.nih.gov/27115703/
10. Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, et al. The Biology of Streptococcus mutans. Microbiol Spectr [Internet]. 2019;7(1):1–18. Available from: https://pubmed.ncbi.nlm.nih.gov/30657107/
11. Øilo M, Bakken V. Biofilm and dental biomaterials. Materials (Basel) [Internet]. 2015;8(6):2887–900. Available from: https://www.mdpi.com/1996-1944/8/6/2887/htm
12. Nair VV, Karibasappa GN, Dodamani A, Prashanth VK. Microbial contamination of removable dental prosthesis at different interval of usage: An in vitro study. J Indian Prosthodont Soc [Internet]. 2016;16(4):1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/27746598/
13. Wozniak DJ, Parsek MR. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities. F1000Prime Rep [Internet]. 2014;6(May):1–7. Available from: https://pubmed.ncbi.nlm.nih.gov/24860649/
14. Klein MI, Hwang G, Santos PHS, Campanella OH, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol [Internet]. 2015;5(FEB):1–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25763359/
15. Dietrich LEP, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newmana DK. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol [Internet]. 2013;195(7):1371–80. Available from: https://pubmed.ncbi.nlm.nih.gov/23292774/
16. Marcenes W, Kassebaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A, et al. Global burden of oral conditions in 1990-2010: A systematic analysis. J Dent Res [Internet]. 2013;92(7):592–7. Available from: https://pubmed.ncbi.nlm.nih.gov/23720570/
17. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun [Internet]. 2014;82(5):1968–81. Available from: https://pubmed.ncbi.nlm.nih.gov/24566629/
18. Klinke T, Guggenheim B, Klimm W, Thurnheer T. Dental caries in rats associated with Candida albicans. Caries Res [Internet]. 2011;45(2):100–6. Available from: https://pubmed.ncbi.nlm.nih.gov/21412001/
19. Lobo CIV, Rinaldi TB, Christiano CMS, De Sales Leite L, Barbugli PA, Klein MI. Dual-species biofilms of Streptococcus mutans and Candida albicans exhibit more biomass and are mutually beneficial compared with single-species biofilms. J Oral Microbiol [Internet]. 2019;11(1). Available from: https://doi.org/10.1080/20002297.2019.1581520
20. Preshaw PM, Walls AWG, Jakubovics NS, Moynihan PJ, Jepson NJA, Loewy Z. Association of removable partial denture use with oral and systemic health. J Dent [Internet]. 2011;39(11):711–9. Available from: http://dx.doi.org/10.1016/j.jdent.2011.08.018
21. Hussain KA, Azzeghaibi SN, Tarakji B, R. S S, Sirajuddin S, Prabhu SS. Iatrogenic Damage to the Periodontium Caused by Removable Prosthodontic Treatment Procedures: An Overview. Open Dent J [Internet]. 2015;9(1):187–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26312084/
22. Jung CJ, Yeh CY, Shun CT, Hsu R Bin, Cheng HW, Lin CS, et al. Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. J Infect Dis [Internet]. 2012;205(7):1066–75. Available from: https://pubmed.ncbi.nlm.nih.gov/22357661/
23. Forte Oliveira FA, Fernandes Forte CP, De Barros Silva PG, Lopes CB, Carvalho Montenegro R, Ribeiro dos Santos ÂK, et al. Molecular analysis of oral bacteria in heart valve of patients with cardiovascular disease by real-time polymerase chain reaction. Med (United States) [Internet]. 2015;94(47):e2067. Available from: https://pubmed.ncbi.nlm.nih.gov/26632711/
24. Barbadoro P, Ponzio E, Coccia E, Prospero E, Santarelli A, Rappelli GGL, et al. Association between hypertension, oral microbiome and salivary nitric oxide: A case-control study. Nitric Oxide - Biol Chem [Internet]. 2021;106(August 2020):66–71. Available from: https://doi.org/10.1016/j.niox.2020.11.002
25. Al Khodor S, Reichert B, Shatat IF. The microbiome and blood pressure: Can microbes regulate our blood pressure? Front Pediatr [Internet]. 2017;5(June):1–12. Available from: https://pubmed.ncbi.nlm.nih.gov/28674682/
26. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation [Internet]. 2017;135(10):964–77. Available from: https://pubmed.ncbi.nlm.nih.gov/27927713/
27. Rollino C, Vischini G, Coppo R. IgA nephropathy and infections. J Nephrol [Internet]. 2016;29(4):463–8. Available from: https://pubmed.ncbi.nlm.nih.gov/26800970/
28. Nagasawa Y, Iio K, Fukuda S, Date Y, Iwatani H, Yamamoto R, et al. Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment. PLoS One [Internet]. 2014;9(1):1–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24489644/
29. Misaki T, Naka S, Hatakeyama R, Fukunaga A, Nomura R, Isozaki T, et al. Presence of Streptococcus mutans strains harbouring the cnm gene correlates with dental caries status and IgA nephropathy conditions. Sci Rep [Internet]. 2016;6(June):1–9. Available from: http://dx.doi.org/10.1038/srep36455
30. Misaki T, Naka S, Kuroda K, Nomura R, Shiooka T, Naito Y, et al. Distribution of Streptococcus mutans strains with collagen-binding proteins in the oral cavity of IgA nephropathy patients. Clin Exp Nephrol [Internet]. 2015;19(5):844–50. Available from: https://pubmed.ncbi.nlm.nih.gov/25492252/
31. Nabee Z, Jeewon R, Pugo-Gunsam P. Oral dysbacteriosis in type 2 diabetes and its role in the progression to cardiovascular disease. Afr Health Sci [Internet]. 2017;17(4):1082–91. Available from: https://pubmed.ncbi.nlm.nih.gov/29937879/
32. Kampoo K, Teanpaisan R, Ledder RG, McBain AJ. Oral Bacterial Communities in Individuals with Type 2 Diabetes Who Live in Southern Thailand. Appl Environ Microbiol [Internet]. 2014;80(2):662–71. Available from: https://pubmed.ncbi.nlm.nih.gov/24242241/
33. Ravindran S, Chaudhary M, Gawande M. Enumeration of Salivary Streptococci and Lactobacilli in Children with Differing Caries Experiences in a Rural Indian Population. ISRN Plast Surg [Internet]. 2013;2013:1–6. Available from: https://downloads.hindawi.com/archive/2013/476783.pdf
34. Salles MM oreir., Oliveira V de C, Souza RF reita., Silva CHL ovat., Paranhos H de FO liveir. Antimicrobial action of sodium hypochlorite and castor oil solutions for denture cleaning - in vitro evaluation. Braz Oral Res [Internet]. 2015;29(1):1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/26313346/
35. De Sousa Porta SR, De Lucena-Ferreira SC, Da Silva WJ, Del Bel Cury AA. Evaluation of sodium hypochlorite as a denture cleanser: A clinical study. Gerodontology [Internet]. 2015;32(4):260–6. Available from: https://pubmed.ncbi.nlm.nih.gov/24329765/
36. Papadiochou S, Polyzois G. Hygiene practices in removable prosthodontics: A systematic review. Int J Dent Hyg [Internet]. 2018;16(2):179–201. Available from: https://pubmed.ncbi.nlm.nih.gov/29120113/
Descargas
Publicado
- Resumen 952
- DESCARGAR EN PDF 572
- HTML 141
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Odontología Activa Revista Científica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Se autoriza la reproducción total y parcial, y la citación del material que aparece en la revista, siempre y cuando se indique de manera explícita: nombre de la revista, nombre del autor(es), año, volumen, número y páginas del artículo fuente. Las ideas y afirmaciones consignadas por los autores están bajo su responsabilidad y no interpretan necesariamente las opiniones y políticas del Consejo Editorial de la Revista OActiva ni de la Universidad Católica de Cuenca.
La Revista OActiva utiliza la Licencia Creative Commons de Reconocimeinto-NoComercial-CompartirIgual 4.0, que es la siguiente: CC BY-NC-SA 4.0 Internacional.