Ultraviolet light for disinfection in health areas, in front of covid-19. literature review

Authors

  • Natali Alejandra Briones Cando Universidad Católica de Cuenca

DOI:

https://doi.org/10.31984/oactiva.v5i3.501

Keywords:

Luz ultravioleta; virus, COVID-19; inactivación viral; desinfección.

Abstract

The COVID -19 pandemic has led to an accelerated search for different techniques to ensure complete disinfection of hospital and dental care areas. This literature review provides health personnel with updated information on the different disinfection techniques, with special emphasis on the use of ultraviolet light, its germicidal effect, different wave spectra and its possible action against the SARS-CoV 2 virus. Objective: To obtain information that supports the bactericidal and viricidal effect of UV light, as well as to establish the recommended parameters for its use. Discussion: The implementation of UV-C light as a method of inactivation against different spores, bacteria and viruses has had a greater impact in recent months due to the new reality that health professionals are facing. Conclusion: The use of UV-C light could significantly reduce the viral load in health areas avoiding cross infections to the professional as well as to the patient.

Downloads

Download data is not yet available.

References

Mackenzie D. Ultraviolet Light Fights New Virus [pu- blished online ahead of print, 2020 Jun 27]. Engineering (Beijing). 2020;doi:10.1016/j.eng.2020.06.009

Reed NG. The history of ultraviolet germicidal irradiation for air disinfection. Public health reports.2010;125(1):15- 27.

Ackerman E. Autonomous robots are helping kill coronavi- rus in hospitals. New York: IEEE Spectrum.2020.

Welch D, Buonanno M, Grilj V, et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep. 2018;8(1):2752.

Welch D, Buonanno M, Shuryak I, et al. Effect of far ultraviolet light emitted from an optical diffuser on methicillin-resistant Staphylococcus aureus in vitro. PLoS One. 2018;13(8):202-275.

Hamed MA. Una visión general sobre COVID-19: realidad y expectativa. Bull Natl Res Cent. 2020 junio;44:86.

Ministerio de Salud Pública. Dirección de vigilancia epide- miológica. Coronavirus COVID 19.

Organización Mundial de la Salud.Informe de situación de la enfermedad por coronavirus 2019 (COVID-19).2020:53 .

Van Doremalen N, Morris DH, Holbrook MG, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. NEJM. 2020 March 17.

Paudel S, Dangal G, Chalise A, et al. The Coronavirus Pandemic: What Does the Evidence Show. J Nepal Health Res Counc. 2020 Apr 19;18(1):1-9.

Contini C, Di Nuzzo M, Barp N, et al. The novel zoonotic COVID-19 pandemic: An expected global health concern. J Infect Dev Ctries. 2020 Mar 31;14(3):254-264.

Burki T. COVID-19 in Latin America. Lancet Infect Dis. 2020;20(5):547-548.

Villacís JE, López M, Passey D, et al. Efficacy of pulsed-xenon ultraviolet light for disinfection of high- touch surfaces in an Ecuadorian hospital. BMC Infect Dis. 2019;19(1):575.

Fiesco-Sepúlveda KY, Serrano-Bermúdez LM. Contribu- tions of Latin American researchers in the understanding of the novel coronavirus outbreak: a literature review. PeerJ. 2020;8: 9332.

Checchi V, Bellini P, Bencivenni D., Consolo U. COVID-19 dentistry-related aspects: a literature overview. International dental journal.

Peng X, Xu X, Li Y, et al. Transmission routes of 2019-

nCoV and controls in dental practice. Int J Oral Sci.

;12(1):9.

Morales Navarro D. Acciones del personal de salud del área estomatológica en relación a la COVID-19. Rev Cubana Estomatol. 2020 Mar;57(1): e3245.

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. The Journal of hospital infection. 2020;104(3):246–251.

Legnani P, Checchi L, Pelliccioni GA, D’Achille C. At- mospheric contamination during dental procedures. Quin- tessence Int. 1994;25(6):435-439.

Leggat PA, Kedjarune U. Bacterial aerosols in the dental clinic: a review. Int Dent J. 2001;51(1):39-44.

Martinelli M, Giovannangeli F, Rotunno S, et al. Water and air ozone treatment as an alternative sanitizing technology. J Prev Med Hyg. 2017;58(1):E48-E52.

Qureshi Z, Yassin MH. Role of ultraviolet (UV) disinfec- tion in infection control and environmental cleaning. Infect Disord Drug Targets. 2013;13(3):191-195.

Quintero-Cerón JP. “Avances en la aplicación de luz ultra- violeta de onda corta (UVC) en frutas y vegetales enteros y mínimamente procesados: revisión Advancements in the application of short-wave ultraviolet light (UVC) in whole and fresh-cut fruit and vegetables: a review.”.2013.

González-Púmariega M, Tamayo MV, Sánchez-Lamar Á. La radiación ultravioleta. Su efecto dañino y consecuencias para la salud humana. Theoria,2009; 18(2):69-80.

Honeyman J. Efectos de las radiaciones ultravioleta en la piel. Rev. Peru. Dermatol.2002;12(2).

Vallejo EO, Vargas N., Martínez-Sánchez L., et al. Pers- pectiva genética de los rayos UV y las nuevas alternati- vas de protección solar. Revista argentina de dermatolo- gía.2003;94.

Health Quality Ontario.Portable Ultraviolet Light Surface- Disinfecting Devices for Prevention of Hospital-Acquired Infections: A Health Technology Assessment. Ont Health Technol Assess Ser. 2018;18(1):1-73.

Darnell, M. E, Subbarao, K, Feinstone, S. M, & Taylor, D. R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of virological methods, 2004;121(1):85–91.

Ravanat J, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63(1-3):88-102.

Perdiz D, Grof P, Mezzina M, Nikaido O. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem. 2000;275(35):26732- 26742.

Heßling M, Hönes K, Vatter P, Lingenfelder C. Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies. GMS Hyg Infect Control. 2020;15.

Yang JH, Wu UI, Tai HM, et al.Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens. Journal of Microbiology, Immunology and Infection.2019; 52(3), 487-493.

Buonanno M, Ponnaiya B, Welch D, et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light. Radiation research.2017;187(4): 493-501.

Woods JA, Evans A, Forbes PD. et al. The effect of 222-nm UVC phototesting on healthy volunteer skin: a pilot study. Photodermatology, photoimmunology & photomedicine.2015;31(3):159-166.

Wengraitis S, Reed NG. Ultraviolet Spectral Reflectance of Ceiling Tiles, and Implications for the Safe Use of Upper- Room Ultraviolet Germicidal Irradiation. Photochemistry and Photobiology.2012; 88(6):1480-1488.

Nardell EA, Bucher SJ, Brickner PW, et al. Safety of upper-room ultraviolet germicidal air disinfection for room occupants: results from the Tuberculosis Ultraviolet Shelter Study. Public health reports.2008;123(1):52-60.

Guo Y, Cao Q, Hong Z. et al. El origen, la transmisión y las terapias clínicas en el brote de la enfermedad por co- ronavirus 2019 (COVID-19): una actualización del estado. Military Med Res.2020; 7:11.

Houser KW. Ten Facts about UV Radiation and COVID-19, LEUKOS.2020;16(3):177-178.

Deverick JA, Luke FC, Weber DL. Enhanced terminal room disinfection and acquisition and infection caused by multidrug resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised,multicentre,crossover study.The lan- cet.2017.

Levin J, Riley LS, Parrish C, et al.. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a com- munity hospital. Am J Infect Control. 2013 Aug;41(8):746- 8.

Narla S, Lyons AB, Kholi I, et al.The importance of the minimum dosage necessary for UVC decontamination of N95 respirators during the COVID-19 pandemic. Whiley. 2020;36(4):324-325.

Rutala W, Gergen M, Weber D.Descontaminación ambien- tal con radiación UV. Rev. chil. infectol. 2010 Dic; 27( 6 ): 573-574

Boyce JM, Havill NL, Moore BA. Terminal decontamina- tion of patient rooms using an automated mobile UV light unit. Infect Control Hosp Epidemiol. 2011;32(8):737-742.

Delgado D, Ortiz C, Daza H, et al. Evaluación del uso de luz UV como alternativa para la descontaminación de equipos odontológicos. Memorias De Congresos UTP.2018;1(1):42- 46.

Buonanno M, Welch D, Shuryak I,Brenner DJ. Far-UVC light 222nm efficiently and safely inactivates airborne hu- man coronaviruses. Sci Rep. 2020;10(1):10285.

Buonanno M, Stanislauskas M, Ponnaiya B, et al. UV light a promising tool for safe low-cost reduction of surgical site infections. II: In-vivo safety studies. PloS one.2016;11(6): e0138418.

Lindblad M, Tano E, Lindahl C, Huss F. Ultraviolet-C decontamination of a hospital room: Amount of UV lightneeded. Burns. 2020;46(4):842-849

Published

2020-09-02
ESTADISTICAS
  • Abstract 3604
  • PDF (Español (España)) 2253

How to Cite

Briones Cando, N. A. (2020). Ultraviolet light for disinfection in health areas, in front of covid-19. literature review. Odontología Activa Revista Científica, 5(3), 111–118. https://doi.org/10.31984/oactiva.v5i3.501