Use of CBCT and computational dental tools for the three-dimensional reconstruction of archaeological objects

Authors

  • Marcelo Enrique Cazar Universidad de Cuenca-Ecuador

DOI:

https://doi.org/10.31984/oactiva.v5i3.520

Keywords:

Cone beam, forencis, cranium, reconstruction, esteolitography

Abstract

Cone Beam Computed Tomographs (CBCT) provide high-quality 3D images with submillimeter resolutions, fairly short scan times (10 to 70 seconds) and radiation doses up to 15 times lower than classic CT systems. Thanks to this, its use in different areas, both in dentistry and in other areas, has increased significantly. Additionally, the advancement of teleradiology and the compatibility of the resulting DICOM images with different types of planning, simulation and 3D printing software; have made it possible to consolidate a powerful tool for the possible early and accurate diagnosis of different deep lesions, anomalies and the acquisition of deep knowledge about a specific maxillofacial area and its relationship with adjacent structures. However, its resulting measurements with very little error range and the possibility of generating three-dimensional reconstructions make it a clear pedagogical instrument of great utility in modern archaeological, technological, forensic, anthropological and biomedical investigation techniques. This article provides an overview of CBCT systems, their associated computational technologies, and demonstrates their applicability as tools for the analysis, preservation, reconstruction and reproduction of archaeological pieces. As a test, its application in the acquisition of different stereolithographic models of archaeological remains of the Pumapungo Museum in the city of Cuenca, Ecuador is described.

Downloads

Download data is not yet available.

References

Fritsch D, Klein M. 3D preservation of buildings–reconstructing the past.. Multimedia Tools and Applications, 77(7). 2018;: p. 9153-9170.

Vasilyev SV, Vasilyeva OA, Galeev RM, Dyuzheva OP, Novikov M, Chichaev IA, et al. 3D RECONSTRUCTION OF THE ANCIENT EGYPTIAN MUMMY SKELETON FROM THE PUSHKIN STATE MUSEUM OF FINE ARTS (I, 1 1240). International Archives of the Photo- Revista OActiva. Vol. 5, No. 3, Año Septiembre-Diciembre 2020. Uso de CBCT y herramientas computacionales odontológicas para la reconstrucción tridimensional de objetos arqueológicos.
83 grammetry, Remote Sensing Spatial Information Sciences. 2019.

Novikov M, Knyaz V, Galeev R. Creating digital models of paleontological sample by photogrammetry and computed tomography. 2019.

Danforth RA, Clark DE. Effective dose from radiation 19. 20. Importancia y aplicaciones del sistema de Tomografia Computarizada Cone-Beam (CBCT). Acta Odontológica Venezolana. 2007;: p. 589-592.

Mildenberger P,EM,ME. Introduction to the DICOM stan- dard.. European radiology. 2002;: p. 920-927.

Shkarin V, Grinin V, Halfin R, Dmitrienko T, Domenyuk D, Fomin I. Craniofacial line of teleradiography and its meaning at cephalometry.. Archiv EuroMedica, 9, 2. 2019. Chen S, Chen YYC, Chang H. Enhanced speed and precision of measurement in a computer-assisted digital cephalometric analysis system.. Angle Orthod, 74. 2004;: p. 501–507.

Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three- dimensional CT scans. Cleft Palate Craniofac J, 34. 1997;: p. 111–116.

Arsic ́ S, Trandafilovic ́ M, Jankovic ́ S, Ilic ́ D, Nedovic ́ B, Vitkovic ́ N, et al. ANALYSIS OF THE HUMAN CEPHA- LOMETRIC PARAMETERS IMPORTANT FOR DEN- TAL PRACTICE.. Facta Universitatis, Series: Medicine Biology, 21(2). 2019.

Li H, Song L, Sun J, Ma J, Shen Z. Dental ceramic prostheses by stereolithography-based additive manufac- turing: potentials and challenges. Advances in Applied Ceramics, 118(1-2). 2019;: p. 30-36.

Álvarez C,CJS,FJ,GC. Avances en equipamientos (I): la Estereolitografía y sus materiales, un paso hacia el futuro. Cient Dent. 2006; 3(2)(151-156).
James MR, Chandler JH, Eltner A, Fraser C, Miller PE, Mills JP, et al. Guidelines on the use of structure-from- motion photogrammetry in geomorphic research. Earth Surface Processes and Landforms, 44(10). 2019;: p. 2081- 2084.

Novikov M, Knyaz V, Galeev R. Creating digital models of paleontological sample by photogrammetry and com- puted tomography. Computer Science Research Notes. 2019.

Chen X,HY,WS. 3D Scanner using Kinect. 2010. Remondino F,GA,VA. 3D modeling of close-range ob- jects: photogrammetry or laser scanning. In Proc. SPIE. 2005;: p. (Vol. 5665, pp. 216-225). MalciuM,PF.Arobustmodel-basedapproachfor3dhead tracking in video sequences. In Automatic Face and Gesture Recognition. Fourth IEEE International Conference on IEEE. 2000;: p. (pp. 169-174). “Meshing point clouds". http://meshlabstuff.blogspot.com/2009/09/ meshing- point-clouds.html. 2011.

Ubelaker D. Facial reconstruction/reproduction.. The In- ternational Encyclopedia of Biological Anthropology, 1-3. 2018.

Klimczak J, Helman S, Kadakia S, Sawhney R, Abraham M, Vest AK, et al. Prosthetics in facial reconstruction.. Craniomaxillofacial trauma reconstruction, 11(01). 2018;: p. 006-014. absorbed during a panoramic examination with a new generation machine. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2000;21. 89(2)(236-243).

Ludlow JB, Davies-Ludlow LE, Brooks SL. Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and Orthophos Plus DS panoramic unit. Dentomaxillofacial Radiology. 2003; 32(4)(229-234).

Ngan D, Kharbanda OP, Geenty JP, Darendeliler M. Com- parison of radiation levels from computed tomography and conventional dental radiographs. Australian orthodon- tic journal. 2003; 19(2)(67).

Maki K, Inou N, Takanishi A, Miller AJ. Computer- assisted simulations in orthodontic diagnosis and the ap- plication of a new cone beam X-ray computed tomo- graphy. Orthodontics craniofacial research. 2003; 6(95- 101).

Parashar V, Whaites E, Monsour P, Chaudhry J, Geist JR. Cone beam computed tomography in dental education: a survey of US, UK, and Australian dental schools.. Journal of dental education. 2012; 76(11)(1443-1447).

Lee WJ, Wilkinson CM, Hwang HS. An accuracy as- sessment of forensic computerized facial reconstruction employing cone-beam computed tomography from live subjects. Journal of forensic sciences. 2012; 57(2)(318- 327).

Sinha PK. Future of forensic odontology in India with cone beam computed tomography. Journal of forensic dental sciences. 2018; 10(1)(1).

Meundi MA, David CM. Application of cone beam com- puted tomography in facial soft tissue thickness measure- ments for craniofacial reconstruction. Journal of oral and maxillofacial pathology: JOMFP. 2019; 23(1)(114).

Hipsley CA, Sherratt E. Psychology, not technology, is our biggest challenge to open digital morphology data. Scientific data, 6(1). 2019;: p. 1-5.

Fritsch D, Klein M. 3D preservation of30. buildings–reconstructing the past. Multimedia Tools and Applications, 77(7). 2018;: p. 9153-9170.

Walton JA. Like Jacob with Esau: The 3D Printed Replica and the Future of the Museum (Doctoral dissertation,31. Virginia Tech). 2018.

Finlayson AE, Epifanio R. La tomografía computarizada de haz cónico. UstaSalud. 2008; 7(2)(125-131).

Orellana Velasquez CE. Tomografía Cone Beam en odon- tología; 2016.

Smith-Jack F, Davies R. Cone beam computed tomo- graphy: an update for general dental practitioners. Dental Update. 2018; 45(4)(329-338).

Frigi Bissoli C,GÁC,MTW,DMCJC,MFE,LDMME. Revista OActiva. Vol. 5, No. 3, Año Septiembre-Diciembre 2020

Marcelo Cazar y col. David E, Thompson T. Human Remains: Another Dimen- sion. The Application of Imaging to the Study of Human Remain Londres: Academic Press Elsevier; 2017.

Grosman L. Reaching the Point of No Return: The Computational Revolution in Archaeology. Annual Re- view of Anthropology, 45 (1). 2016;: p. 129-145.

Nieder GL, Nagy F, Wagner LA. Preserving and sharing examples of anatomical variation and developmental ano- malies via photorealistic virtual reality. Anat Rec B New Anat 276. 2004;: p. 15-18.

Kuzminsky SC. Rancho La Brea Woman: a new 3D analysis of a 9,000-yearold Paleoamerican cranium from Southern California.. American Journal of Physical Anth- ropology 147 (S54). 2012;: p. 187.

White TD, Folkens PA. Human Osteology, second ed. Academic Press. San Diego. 2000.

Urbanová P, Vojtíšek T, Frišhons J, Šandor O, Jurda M, Krajsa J. Applying 3D prints to reconstructing postmor- tem craniofacial features damaged by devastating head injuries.. Legal Medicine. 2018;: p. 48-52.

Ioannides M, Arnold DB, Niccolucci F, Mania F. Procee- dings of VAST 2006:. The 7th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural. Eurographics Association. 2006.

Neumüller M, Reichinger A, Rist F, Kern C. 3D printing for cultural heritage: Preservation, accessibility, research and education.. In 3D Research Challenges in Cultural He- ritage (pp. 119-134). Springer, Berlin, Heidelberg. 2014.

Saxenal SVe. The credibility of dental pulp in human blood group identification. J Forensic Dent Sci. 2017;: p. 6-9. Dimension in Personal Identification. International journal of dentistry. 2017.

More CB,VR,SN. Morphometric analysis of mandibular ramus for sex determination on digital orthopantomo- gram.. Journal of Forensic Dental Sciences. 2017.

Akkoç B,AA,KH. Automatic gender determination from 3D digital maxillary tooth plaster models based on the random forest algorithm and discrete cosine transform. Computer Methods and Programs in Biomedicine. 2017;: p. 59-65.

Almache MC, Alejandro PCV, Bravo ME. Determinación de estándares Cefalométricos de las diferentes etnias de Ecuador. Revista Latinoamericana de Ortodoncia y Odon- topediatría. 2019.

Cazar Almache Marcelo ACMRSNdJ. Análisis Estético dentofacial: Base de la terapéutica en deformidades facia- les. ACTIVA UC Cuenca. Vol. 2, No. 3. 2017;: p. 27-34. Martins TACP,BAS,SGBC,FTV,DBC,SJVL. InVesalius: three-dimensional medical reconstruction software. Vir- tual and rapid manufacturing. 2007;: p. 135-141.

Camilo AA,APHJ,MTF,AFDS,dSJVL. InVesalius: medi- cal image edition. 1st International Conference on Design and Processes for Medical Devices. 2012;: p. 279-282). da Costa Moraes CA,DPEM,MRFH. Demonstration of protocol for computer-aided forensic facial reconstruction with free software and photogrammetry. Journal of Re- search in Dentistry. 2014;: p. 77-90.

Wilkinson C. Forensic facial reconstruction. Cambridge University Press. 2004.

Prokopec M,UDH. Reconstructing the shape of the nose according to the skull. Forensic Sci Commun. 2002. Moraes C. Manual de reconstrução facial 3d digital. “Meshing point clouds. http://meshlabstuff.blogspot.com/2009/09/ meshing- point-clouds.html. 2011. Recibido: 20 de abril de 2020 Aceptado: 03 de mayo del 2020

Nayar AK,PS,TG,SA,SD. Determination of age, sex, and blood group from a single tooth. Journal of Forensic60. Dental Sciences. 2017;: p. 9(1), 10.
PK.et D. Textbook of Forensic Odontology. Paras Medical Publishers. 1998.

ML B, LF B, HA. L. The morphology of the nerve cell nucleus, according to sex. Anat Rec. 1950; 107(283-97).

AcharyaAB.Anewdigitalapproachformeasuringdentin translucency in forensic age estimation. Am J Forensic Med Pathol. 2010;: p. 31:133-7.

Ramnarayan B K et al. ABO blood grouping from hard and. Journal of Forensic Dent. 2013;: p. 28-34.

Teke HY et al. SurgRadiol Anat. 2007;: p. 29(1) :9-1.

KhaitanT,KA,GU,JR.CephalometricAnalysisforGender Determination Using Maxillary Sinus Index: A Novel

Published

2020-09-03
ESTADISTICAS
  • Abstract 699
  • PDF (Español (España)) 792

How to Cite

Cazar, M. E. (2020). Use of CBCT and computational dental tools for the three-dimensional reconstruction of archaeological objects. Odontología Activa Revista Científica, 5(3), 73–84. https://doi.org/10.31984/oactiva.v5i3.520