INTRODUCTION TO BIOMIMETIC DENTISTRY: A CASE REPORT

Authors

  • Juan Andrés Espinoza Cárdenas 0000-0002-8574-1961
  • Andrés Delgado-Gaete Universidad Católica de Cuenca
  • Daniela Astudillo-Rubio Universidad de Cuenca-Ecuador
  • Karelys Maldonado-Torres Universidad de Cuenca-Ecuador

DOI:

https://doi.org/10.31984/oactiva.v7i2.772

Keywords:

Caries, cuspal coverage, bond strength, stress, fiber-reinforced composite restoration

Abstract

ABSTRACT

Biomimetic dentistry comes from the combination of two words BIO which is life and MIMESIS which is imitation. Alleman divides biomimetic dentistry into 6 pillars. In this study we summarize it in 3 fundamental pillars: Structural Analysis, Adhesion Enhancement, and Stress Reduction. The aim of this article is to present a biomimetic restorative technique to reduce the failures that occur during a conventional restoration. A 22-year-old female patient presented to the oral rehabilitation clinic because she reported discomfort in tooth 2.6 at least 6 months ago. The diagnosis was pulp necrosis, she was referred to endodontics, and after two weeks the patient came back to the oral rehabilitation clinic. The prognosis of the treatment is good. The restorative protocol was: control of occlusion, caries removal end points, structural analysis, increasing bond strengths, decreasing polymerization stresses and control of force balance. A structurally compromised tooth may exhibit one of these signs: a crack in dentin, an isthmus greater than 2 mm, a cusp less than 2 mm, and a cavity depth of more than 4 mm. Bonding is enhanced through the use of gold standard adhesives and methods such as immediate dentin sealing and deep margin elevation. Horizontal increments of 1 mm of composite resin and the use of polyethylene fibers are useful for stress reduction.

Downloads

Download data is not yet available.

References

van Meerbeek B, Yoshihara K, van Landuyt K, Yoshida Y, Peumans M. From buonocore’s pioneering acid-etch technique to self-adhering restoratlves. A status perspective of rapidly advancing dentai adheslve technology. J Adhes Dent. 2020;22(1):7–34.

Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for anterior teeth. J Prosthet Dent. 2002;87(5):503–9.

Alleman DS, Magne P. A systematic approach to deep caries removal end points: the peripheral seal concept in adhesive dentistry. Quintessence Int [Internet]. 2012;43(3):197–208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22299120

David Starr, Alleman D, Davey Scott, Alleman D, Simone, Deliperi D, Jorge Aravena, Diaz D, Leandro, Martins, DDS, MS, PhD; Filip, Keulemans, DDS P, Nakabayashi, N., Kojima, K., Matsuhara E, et al. Decoupling with Time. Insid Dent. 2021;22(August 2021):7–34.

Brännström M. The hydrodynamic theory of dentinal pain: Sensation in preparations, caries, and the dentinal crack syndrome. J Endod. 1986;12(10):453–7.

Magne P, Oganesyan T. CT scan-based finite element analysis of premolar cuspal deflection following operative procedures. Int J Periodontics Restorative Dent [Internet]. 2009;29(4):361–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19639057

Deliperi S, Bardwell DN. Multiple cuspal-coverage direct composite restorations: Functional and esthetic guidelines. J Esthet Restor Dent. 2008;20(5):300–8.

Abu-Awwad M. Dentists’ decisions regarding the need for cuspal coverage for endodontically treated and vital posterior teeth. Clin Exp Dent Res. 2019;5(4):326–35.

Forster A, Braunitzer G, Tóth M, Szabó BP, Fráter M. In Vitro Fracture Resistance of Adhesively Restored Molar Teeth with Different MOD Cavity Dimensions. J Prosthodont. 2019;28(1):e325–31.

Magne Pascal. Immediate Dentin Sealing: A Fundamental Procedure for Indirect Bonded Restorations. J Esthet Restor Dent [Internet]. 2006;144–54. Available from: https://pubmed.ncbi.nlm.nih.gov/15996383/

Nikaido T, Tagami J, Yatani H, Ohkubo C, Nihei T, Koizumi H, et al. Concept and clinical application of the resin-coating technique for indirect restorations. Dent Mater J. 2018;37(2):192–6.

Magne P, Spreafico RC. Deep Margin Elevation : Am J Esthet Dent. 2012;86–96.

Bresser RA, Gerdolle D, van den Heijkant IA, Sluiter-Pouwels LMA, Cune MS, Gresnigt MMM. Up to 12 years clinical evaluation of 197 partial indirect restorations with deep margin elevation in the posterior region. J Dent [Internet]. 2019;91:103227. Available from: https://doi.org/10.1016/j.jdent.2019.103227

Nikolaenko SA, Lohbauer U, Roggendorf M, Petschelt A, Dasch W, Frankenberger R. Influence of c-factor and layering technique on microtensile bond strength to dentin. Dent Mater. 2004;20(6):579–85.

Feilzer AJ, de Gee AJ, Davidson CL. Setting Stress in Composite Resin in Relation to Configuration of the Restoration. J Dent Res. 1987;66(11):1636–9.

Soares CJ, Faria-E-Silva AL, Rodrigues M de P, Fernandes Vilela AB, Pfeifer CS, Tantbirojn D, et al. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know? Braz Oral Res. 2017;31:49–63.

Lu H, Stansbury JW, Bowman CN. Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent Mater. 2004;20(10):979–86.

Garcia-Godoy F, Frankenberger R, Lohbauer U, Feilzer AJ, Krämer N. Fatigue behavior of dental resin composites: Flexural fatigue in vitro versus 6 years in vivo. J Biomed Mater Res - Part B Appl Biomater. 2012;100 B(4):903–10.

Gagnier JJ, Kienle G, Altman DG, Moher D, Sox H, Riley D, et al. The CARE guidelines: Consensus-based clinical case report guideline development. J Clin Epidemiol. 2014;67(1):46–51.

AAE Consensus Conference Recommended Diagnostic Terminology. J Endod. 2009;35(12):1634.

Sinjari B, Santilli M, D’Addazio G, Rexhepi I, Gigante A, Caputi S, et al. Influence of dentine pre-treatment by sandblasting with aluminum oxide in adhesive restorations. An in vitro study. Materials (Basel). 2020;13(13).

Breschi L, Maravic T, Comba A, Cunha SR, Loguercio AD, Reis A, et al. Chlorhexidine preserves the hybrid layer in vitro after 10-years aging. Dent Mater [Internet]. 2020;36(5):672–80. Available from: https://doi.org/10.1016/j.dental.2020.03.009

Milicich G, Rainey JT. Clinical presentations of stress distribution in teeth and the significance in operative dentistry. Pract Periodontics Aesthet Dent. 2000;12(7).

Lia Mondelli RF, Ishikiriama SK, De Oliveira Filho O, Mondelli J. Fracture resistance of weakened teeth restored with condensable resin with and without cusp coverage. J Appl Oral Sci. 2009;17(3):161–5.

Tagami J, Numata T, Chan D, Sadr A. Real-time in-depth imaging of gap formation in bulk-fill resin composites. Dent Mater. 2019;35(4):585–96.

Bazos P. Biomimetically Emulating Nature Utilizing a Histo-Anatomic Approach ; Structural Analysis fo r Bio-Emulation : 2011;

Sáry T, Garoushi S, Braunitzer G, Alleman D, Volom A, Fráter M. Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques – An in vitro study. J Mech Behav Biomed Mater [Internet]. 2019;98(May):348–56. Available from: https://doi.org/10.1016/j.jmbbm.2019.07.006

Jose C. Incremental Filling Technique and Composite Material — Part II : Shrinkage and Shrinkage Stresses. 2014;83–92.

Belli S, Cobankara FK, Eraslan O, Eskitascioglu G, Karbhari V. The effect of fiber insertion on fracture resistance of endodontically treated molars with MOD cavity and reattached fractured lingual cusps. J Biomed Mater Res - Part B Appl Biomater. 2006 Oct;79(1):35–41.

Deliperi S, Alleman D, Rudo D. Stress-reduced direct composites for the restoration of structurally compromised teeth: Fiber design according to the “wallpapering” technique. Oper Dent. 2017 May 1;42(3):233–43.

Published

2022-05-10
ESTADISTICAS
  • Abstract 5496
  • DESCARGAR EN PDF (Español (España)) 8485
  • HTML (Español (España)) 472

How to Cite

Espinoza Cárdenas, J. A., Delgado-Gaete, A. ., Astudillo-Rubio, D., & Maldonado-Torres, K. (2022). INTRODUCTION TO BIOMIMETIC DENTISTRY: A CASE REPORT. Odontología Activa Revista Científica, 7(2), 89–97. https://doi.org/10.31984/oactiva.v7i2.772